In mathematics, especially vector calculus and differential topology, a closed form is a differential form α whose exterior derivative is zero (); and an exact form is a differential form, α, that is the exterior derivative of another differential form β, i.e. . Thus, an exact form is in the image of d, and a closed form is in the kernel of d (also known as null space).
For an exact form α, for some differential form β of degree one less than that of α. The form β is called a "potential form" or "primitive" for α. Since the exterior derivative of a closed form is zero, β is not unique, but can be modified by the addition of any closed form of degree one less than that of α.
Because , every exact form is necessarily closed. The question of whether every closed form is exact depends on the topology of the domain of interest. On a contractible domain, every closed form is exact by the Poincaré lemma. More general questions of this kind on an arbitrary differentiable manifold are the subject of de Rham cohomology, which allows one to obtain purely topological information using differential methods.
Note that the argument is only defined up to an integer multiple of since a single point can be assigned different arguments etc. We can assign arguments in a locally consistent manner around but not in a globally consistent manner. This is because if we trace a loop from counterclockwise around the origin and back to the argument increases by Generally, the argument changes by
Even though the argument is not technically a function, the different local definitions of at a point differ from one another by constants. Since the derivative at only uses local data, and since functions that differ by a constant have the same derivative, the argument has a globally well-defined derivative The article Covering space has more information on the mathematics of functions that are only locally well-defined.
The upshot is that is a one-form on that is not actually the derivative of any well-defined function We say that is not exact. Explicitly, is given as:
On the other hand, for the one-form
The form generates the de Rham cohomology group meaning that any closed form is the sum of an exact form and a multiple of where accounts for a non-trivial contour integral around the origin, which is the only obstruction to a closed form on the punctured plane (locally the derivative of a potential function) being the derivative of a globally defined function.
that are of real interest. The formula for the exterior derivative here is
where the subscripts denote partial derivatives. Therefore the condition for to be closed is
In this case if is a function then
The implication from 'exact' to 'closed' is then a consequence of the symmetry of second derivatives, with respect to and .
The gradient theorem asserts that a 1-form is exact if and only if the line integral of the form depends only on the endpoints of the curve, or equivalently, if the integral around any smooth closed curve is zero.
In 3 dimensions, an exact vector field (thought of as a 1-form) is called a conservative vector field, meaning that it is the derivative (gradient) of a 0-form (smooth scalar field), called the scalar potential. A closed vector field (thought of as a 1-form) is one whose derivative (curl) vanishes, and is called an irrotational vector field.
Thinking of a vector field as a 2-form instead, a closed vector field is one whose derivative (divergence) vanishes, and is called an incompressible flow (sometimes solenoidal vector field). The term incompressible is used because a non-zero divergence corresponds to the presence of sources and sinks in analogy with a fluid.
The concepts of conservative and incompressible vector fields generalize to n dimensions, because gradient and divergence generalize to n dimensions; curl is defined only in three dimensions, thus the concept of irrotational vector field does not generalize in this way.
More generally, the lemma states that on a contractible open subset of a manifold (e.g., ), a closed p-form, p > 0, is exact.
Using contracting homotopies similar to the one used in the proof of the Poincaré lemma, it can be shown that de Rham cohomology is homotopy-invariant.
The second law of thermodynamics is an empirical law of nature which says that there is no thermodynamic system for which in every circumstance, or in mathematical terms that, the differential form is not closed. Caratheodory's theorem further states that there exists an integrating denominator such that
is a closed 1-form. The integrating denominator is the temperature, and the state function is the equilibrium entropy.
For the magnetic field one has analogous results: it corresponds to the induction two-form and can be derived from the vector potential , or the corresponding one-form ,
Thereby the vector potential corresponds to the potential one-form
The closedness of the magnetic-induction two-form corresponds to the property of the magnetic field that it is source-free: i.e., that there are no magnetic monopoles.
In a special gauge, , this implies
(Here is the magnetic constant.)
This equation is remarkable, because it corresponds completely to a well-known formula for the electrical field , namely for the electrostatic Coulomb potential of a charge density . At this place one can already guess that
If the condition of stationarity is left, on the left-hand side of the above-mentioned equation one must add, in the equations for to the three space coordinates, as a fourth variable also the time t, whereas on the right-hand side, in the so-called "retarded time", must be used, i.e. it is added to the argument of the current-density. Finally, as before, one integrates over the three primed space coordinates. (As usual c is the vacuum velocity of light.)
|
|